When is a linear system conservative?
نویسندگان
چکیده
منابع مشابه
When Is a Linear System Conservative ?
We consider infinite-dimensional linear systems without a-priori wellposedness assumptions, in a framework based on the works of M. Livšic, M. S. Brodskĭı, Y. L. Smuljan, and others. We define the energy in the system as the norm of the state squared (other, possibly indefinite quadratic forms will also be considered). We derive a number of equivalent conditions for a linear system to be energy...
متن کاملConservative chaotic flow generated via a pseudo-linear system
Analysis of nonlinear autonomous systems has been a popular field of study in recent decades. As an interesting nonlinear behavior, chaotic dynamics has been intensively investigated since Lorenz discovered the first physical evidence of chaos in his famous equations. Although many chaotic systems have been ever reported in the literature, a systematic and qualitative approach for chaos generat...
متن کاملWhen is a linear multi-modal system disturbance decoupled?
In this paper we study the question under which conditions a linear multi-modal system is disturbance decoupled. We establish necessary and sufficient geometric conditions from which the existing results on switched linear systems and conewise linear systems can be recovered as special cases. Also, we apply these conditions to a class of linear complementarity systems in order to obtain a more ...
متن کاملSOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR COMPLEMENT WHEN COEFFICIENT MATRIX IS AN M-MATRIX
This paper analyzes a linear system of equations when the righthandside is a fuzzy vector and the coefficient matrix is a crisp M-matrix. Thefuzzy linear system (FLS) is converted to the equivalent crisp system withcoefficient matrix of dimension 2n × 2n. However, solving this crisp system isdifficult for large n because of dimensionality problems . It is shown that thisdifficulty may be avoide...
متن کاملWhen every $P$-flat ideal is flat
In this paper, we study the class of rings in which every $P$-flat ideal is flat and which will be called $PFF$-rings. In particular, Von Neumann regular rings, hereditary rings, semi-hereditary ring, PID and arithmetical rings are examples of $PFF$-rings. In the context domain, this notion coincide with Pr"{u}fer domain. We provide necessary and sufficient conditions for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 2006
ISSN: 0033-569X,1552-4485
DOI: 10.1090/s0033-569x-06-00994-7